If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+45x-225=0
a = 2; b = 45; c = -225;
Δ = b2-4ac
Δ = 452-4·2·(-225)
Δ = 3825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3825}=\sqrt{225*17}=\sqrt{225}*\sqrt{17}=15\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-15\sqrt{17}}{2*2}=\frac{-45-15\sqrt{17}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+15\sqrt{17}}{2*2}=\frac{-45+15\sqrt{17}}{4} $
| x+0.12x=3800 | | 3+x-5/5=2+1/5x | | 7x-5=5x=23 | | m(m-1)+5m+13=0 | | 10x^2-32x-255=0 | | 3x+35=12x-1 | | 18/n=6/10 | | 18/n=16/28 | | -3(2x–8)=-12 | | 5(x-4)=x-10 | | 3(f+6)=+2(f−4) | | 2x+2+2(x-1)^1/2=16 | | 2x+2+2√x-1=16 | | -2x2+2x=16 | | -2x²+2x=16 | | x+2=30/x+1 | | 9⋅(7x−8)−7⋅(9x+8)=−128. | | 2h2-5h-12=2 | | (6x+10)+(2x+10)=180° | | x³+x²-12x-12=0 | | 180=15x+5 | | 3a-a=6a | | 4-2-5x=-58 | | 4-9x=-59 | | (6²)/(4^n-2)=9 | | 12-x=(2x-3) | | (C=0,7)r=1 | | X/5=45x= | | 6y+4y=-8 | | 5^(3x-18)-1=0 | | 5^3x-18-1=0 | | x+5x=7x |